Labeled FISH probes for identification of subtelomere aberrations using Fluorescent In Situ Hybridization Technique. (Technology).
Made to order FISH probes for identification of gene amplification using Fluorescent In Situ Hybridization Technique. (Technology).
Labeled FISH probes for identification of subtelomere aberrations using Fluorescent In Situ Hybridization Technique. (Technology).
Made to order FISH probes for identification of gene amplification using Fluorescent In Situ Hybridization Technique. (Technology).
Labeled FISH probes as chromosomal markers using Fluorescent In Situ Hybridization Technique. (Technology).
Labeled FISH probes for identification of subtelomere aberrations using Fluorescent In Situ Hybridization Technique. (Technology).
Made to order FISH probes for identification of gene amplification using Fluorescent In Situ Hybridization Technique. (Technology).
Made to order FISH probes for identification of gene amplification using Fluorescent In Situ Hybridization Technique. (Technology).
Made to order FISH probes for identification of gene amplification using Fluorescent In Situ Hybridization Technique. (Technology).
Made to order FISH probes for identification of gene amplification using Fluorescent In Situ Hybridization Technique. (Technology).
IGH Split CISH Probe is designed for the qualitative detection of human IGH locus at 14q32.33 in formalin-fixed, paraffin-embedded specimens by chromogenic in situ hybridization (CISH).
Labeled FISH probes for identification of gene amplification using Fluorescent In Situ Hybridization Technique.